CARNEGIE MELLON UNIVERSITY BME 2024 SPRING SEMINAR SERIES

Injectable Hydrogels that Direct Stem Cell Fates and Induce Targeted Bone Formation

PRESENTED BY

Sebastian Vega, PhD

Assistant Professor Biomedical Engineering Assistant Professor Orthopaedic Surgery Rowan University

SCHEDULE

Doherty Hall (DH) 2315

Thursday, February 29, 2024 (11:00-12:00PM)

Injectable hydrogels are a class of soft biomaterials that are delivered to a region of interest and solidify into a hydrated polymeric network in situ. Our lab develops injectable hydrogels with customizable biophysical and biochemical properties to study cell-matrix interactions and to locally deliver therapeutics noninvasively. In this seminar, I will first overview the chemistry behind our two-component system that upon mixing, forms a hydrogel with tunable stiffness, gelation time, and 3D cell-mediated enzymatic hydrogel remodeling. I will then detail our ability to pre-functionalize hydrogel components with cell-instructive peptides, and how we used this process to create injectable hydrogels that facilitate 2D cell adhesion and induce 3D osteogenic differentiation of encapsulated stem cells. Finally, I will share a translational angle, using this system to accelerate bone formation in a rodent intramedullary canal femur model. Ultimately, the long-term vision of this work is to create a minimally invasive injectable therapeutic to prevent osteoporosis-related bone fractures, a condition which affects millions worldwide.

