Assistive Technology for Opioid Addiction Recovery

Courtney Ollis^{1,4}, Nelly-Raissa Setchie-Tchato^{1,2}, Shivani Shukla^{1,2}, Kayla Vokt^{1,3}, Gwen Wright^{1,2}, John Mangual^{1,4}, Elena Deng⁵ Biomedical Engineering¹, Materials Science and Engineering², Electrical and Computer Engineering³, Mechanical Engineering⁴, Product Design⁵ - Carnegie Mellon University

Introduction

Opioid Addiction In the US

130 2.1 Million

\$42 Billion Treatment Industry

Current Treatment Methods

Therapy

- Cognitive Behavioral Therapy
- Individualized tools to target bad habits

Medication

- Methadone, buprenorphine, naloxone, and naltrexone
- Alleviate symptoms of withdrawal

Technology

- Percutaneous electrical nerve stimulation (PENS)
- Pain relief from acute withdrawal symptoms

Proposed Solution

Individualized addiction recovery utilizing physiological patterns to increase patient self-awareness and avoid relapse

Design of Solution

Electrodermal Sensor Heart Rate Sensor Trigger Button

Battery life indicator Wi-Fi enabled

Adjustable straps Silicone Encasing

Computer Interface will show EDA, HR and Event Trackers on an easy to understand platform

Testing Methods

Primary Research Findings

Takeaways from interviews, market sizing

Circuit Considerations

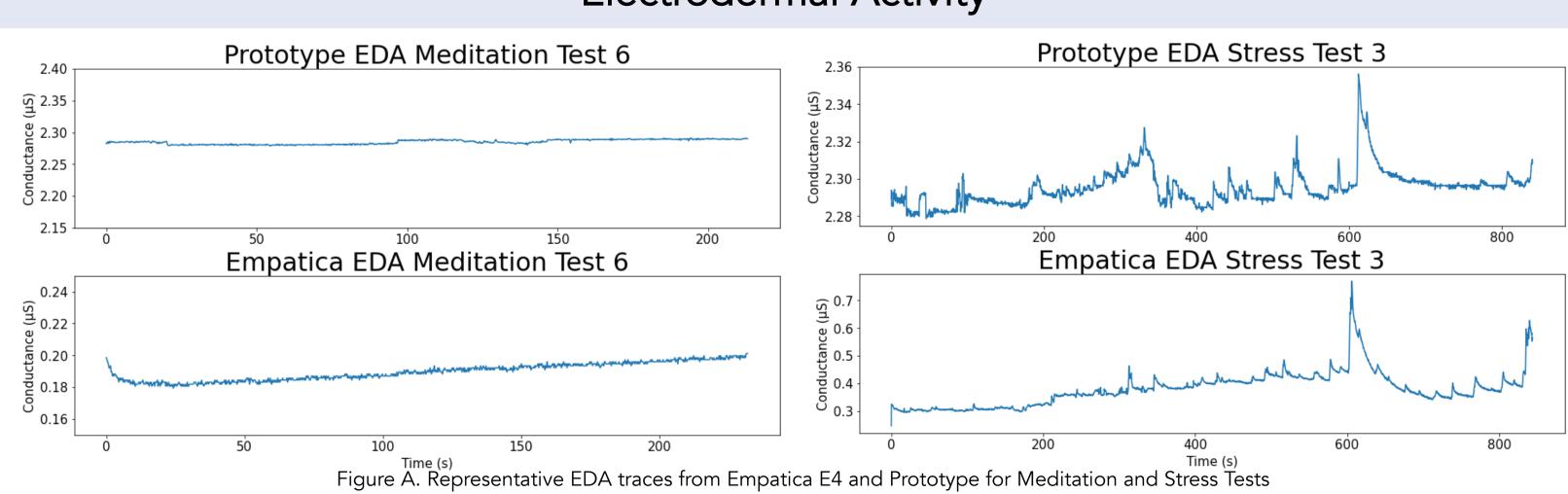
 Prototype uses Arduino software to implement instantaneous reading of heart rate, electrodermal activity, and event tracking using commercial sensors and a button

Stress Test Study

Baseline Meditation

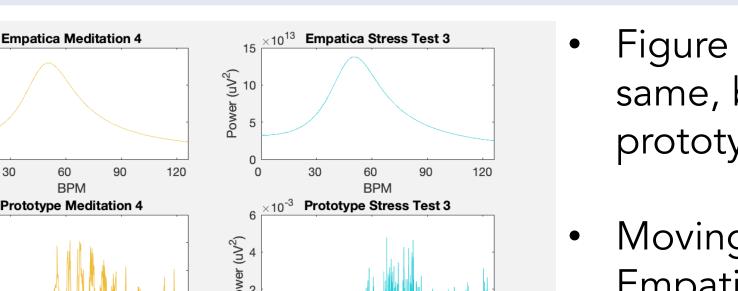
3-minute mediation sessions conducted using Headspace App

Trier Social


Stress Test 15-minute test o brainstorming, presenting, and menta arithmetic

Data Processing

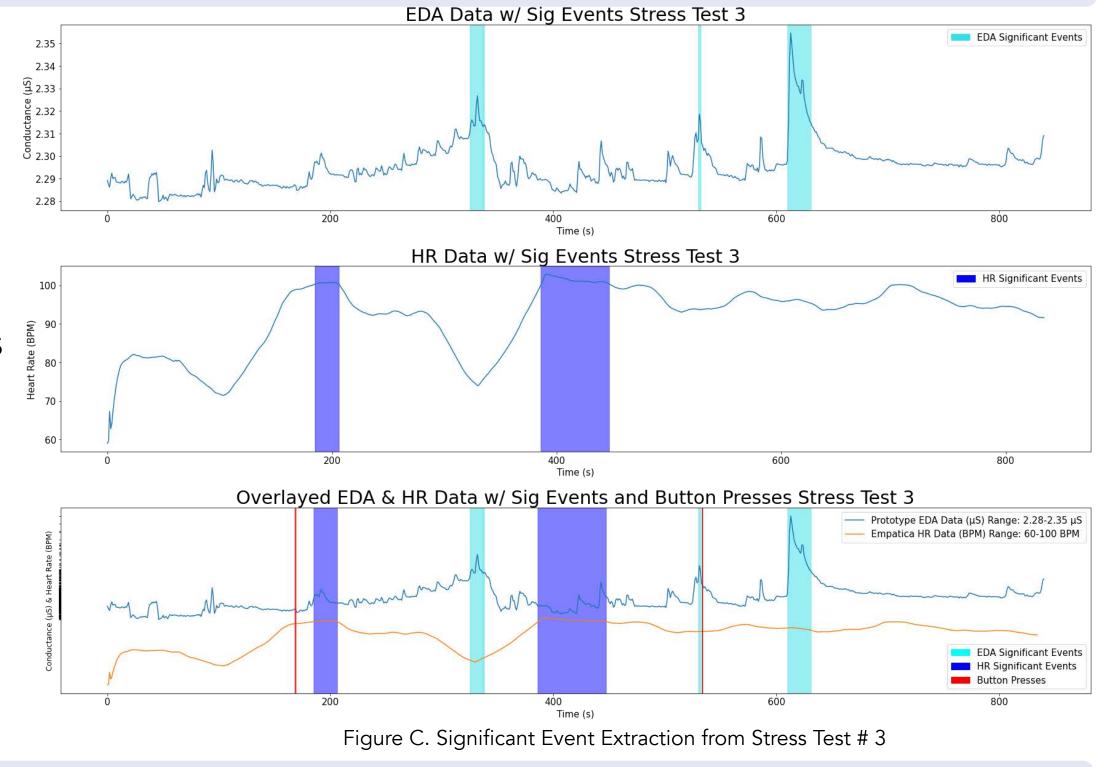
On both MATLAB and Google Colab using Python Heart Rate Analysis Toolkit, heartpy


Proof of Feasibility

Electrodermal Activity

- Figure A shows representative EDA readings from both the Empatica E4 and our prototype for a meditation (baseline) test and stress test separately.
- Corresponding peak features (i.e. time stamp, amplitude, recovery time.), validate our prototype's sensor as a viable alternative to Empatica E4.

Heart Rate


- Figure B shows that the frequency range is the same, but distribution shapes differ greatly, and prototype shows high levels of noise
- Moving forward, HR data collected from Empatica E4 will be used as a data source for proof-of-concept event extraction.

Significant Event Extraction

 Figure C shows significant events extracted from Stress Test #3 using overlaid EDA, HR, and event tracker data.

Figure B. Heart Rate data from the Empatica and Prototype

- Data from multiple devices can be integrated to the same display
- The highlighted areas indicate "significant" moments in the recording when the individual was showing signs of stress

Fitting Into Existing Workflow

Patient checks into

rehabilitation center

reaction to stress

Therapist suggests Motiva to Device is owned by rehab patient to track physiological

center but loaned to patient who is liable

LED display indicates battery

life and device/ sensor status

Therapist discusses stressfu events logged by biometric data with patient

Patient may wear and adjust

Motiva on wrist, arm, or chest

Commercialization

Patentability

Wrist-Wearable body	Apparatus for			
composition	Electrodermal			
neasuring device and	Activity			
body composition	Measurement			
measuring method	with Current			
	Compensation			

PPG Apparatus System and

Method and Apparatus for Generating Assessments Using Physical Activity and Biometric Parameters

Table A: Patented devices that have core features of Motiva in their first claim

Potential Remedies:

Specific and narrow claim and In-licensing

Market and Reimbursement

Price

- Lower price compared to competitors
- Rehabilitation costs reduced due to decreased relapse rates

Coverage

- Medicare/Medicaid coverers medically necessary treatment
- Not covered due to use in tandem with other treatments

Manufacturing Costs

- The main parts of the prototype are two sensors, a button, other hardware and an injection-molded case for the parts.
- Estimating a bulk discount of 15% or using bulk costs

	Beetle	Battery	GSR	HR	Button	Strap	Casing	Total
Bulk Unit Price	\$13.00	\$5.06	\$18.60	\$5.75	\$0.11	\$1.50	\$7.00	\$51.02
Bulk Price (500 units)	\$6,500.00	\$2,530.00	\$9,300.00	\$2,875	\$55.00	\$750.00	\$3,500.00	\$25,510

Table B: Manufacturing Costs for 500 devices

Acknowledgments

We would like to thank Dr. Conrad Zapanta and Melanie Loppnow for their support and feedback throughout the project. We would also like to thank Jeremy Guttman and Biomotivate for partnering with us and making this project possible.

References

- 1. "Understanding the Epidemic." Centers for Disease Control and Prevention, Centers for Disease Control and Prevention, 19 Dec. 2018,
- https://www.cdc.gov/drugoverdose/epidemic/index.html. "510k: Evaluating Substantial Equivalence Premarket Notifications." FDA, 28 July 2014
- https://www.fda.gov/media/82395/download "General Wellness: Policy for Low Risk Devices" FDA, 27 Sept 2019 https://www.fda.gov/media/90652/download
- Center for Devices and Radiological Health. (n.d.). Premarket Notification 510(k).
- https://www.fda.gov/medical-devices/premarket-submissions/premarket-notification-510k Lal, R. "Empatica Srl". U.S Food and Drug Administration https://www.accessdata.fda.gov/cdrh_docs/pdf18/K181861.pdf
- 10. "510k Summary of Safety and Effectiveness FitBit." U.S Food and Drug Administration 11. https://www.accessdata.fda.gov/cdrh_docs/pdf13/K133872.pdf
- www.ohio.edu/mechanical/design/Resources/CostsforSrD.pdf. 13. Köpetz, Cătălina E et al. "Motivation and Self-Regulation in Addiction: A Call for Convergence." Perspectives on psychological science : a
- journal of the Association for Psychological Science vol. 8,1 (2013): 3-24. doi:10.1177/1745691612457575 14. "Substance Use Disorders." Medicaid.org, Nov. 2019, https://www.medicaid.gov/medicaid/benefits/behavioral-health-services/substance-use-
- 15. Wagener, D. . "Medicaid Paying for Rehab List of Treatments Covered by Medicaid." https://americanaddictioncenters.org/insurance-
- coverage/using-medicaid-to-pay-for-rehab 16. "Time for a Change." Surgeon General.gov. https://addiction.surgeongeneral.gov/vision-future/time-for-a-change

12. Dr. Kremer. "Recommended Method for Determining Production Costs." Ohio University, OU ME Sr. Design Project,

motlva

diurnal biometric data to

prepare for sessions

Patient returns device once rehabilitation goals are achieved

Patient can log events

manually, while EDA and

heart rate are automatically

Patient leaves facility and

device is given to next