A Treatment for Nasal Valve Collapse

Neil Carleton (MechE), Zeyu Hu (BME), Rinko Maeshima (ChemE)
Marissa Schwartz (MSE), Jamei Wang (ChemE)
Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA

Nasal Valve Collapse

- The nasal valve is a region inside the nasal passageway.
 - Internal valve sits about 2 cm above base of the nose.
 - It provides appropriate airflow resistance before air enters the trachea and lungs.

- Nasal valve collapse results in a piece of cartilage restricting the nasal valve, and can result from several causes:
 - Nasal septum deviation: the septum is displaced sideways, resulting in blockage of the nasal valve at the side of displacement.
 - Turbine hypertrophy: the turbinates enlarge to minimize the opening of the nasal valve.
 - Injury to the nose: the nasal valve is damaged and weakened.

- Negative pressure is created during inhalation, and weakened valve strength or valve area can lead to collapse and the following symptoms:
 - Difficulty breathing
 - Symptoms of congestion

Clinical Need

- Approximately 28 million Americans suffer from nasal valve collapse.
- Current treatments are $20 for temporary symptom reducers to over $8000 for surgery.
 - Surgery is not financially feasible for some patients.
 - Existing solutions that are non-invasive are externally visible and are uncomfortable to use.

Product Design

- The design of the nasal valve supporting device, which fits securely inside one nostril.
 - Solid sections strengthen the device.
 - Mesh areas provide flexibility.
 - Upper and lower rings facilitate insertion/removal.

Product Testing

- Qualitative Testing:
 - The device was worn in one nostril and comfort was assessed by the wearer over time.

- Quantitative Testing:
 - The average cross sectional area of the nostril opening with and without the device was determined using ImageJ.

Statistical Analysis:
- A two sample unequal variance t-test was performed on four area data samples, resulting in a p value of 0.000473.
- p <0.05, indicating statistical significance.

Future Work

- Create an accurate model of scaled nose prototype for better visual demonstration of how device works.
- Perform quantitative testing of device flow using tubing and gravity - a more robust set of testing is warranted to prove the clinical efficacy of the device.
 - Acoustic rhinometry is the gold standard for testing and can measure the cross-sectional area of the nasal passageways at different points.
 - Prototype device for insertion and removal.
 - Reinforce current device as needed (ex. if the insertion/removal device can tear it).

Acknowledgments

The team thanks Dr. Conrad Zapanta, Dr. Phil Zapanta, Lexi Shea, Lauren Zemering, and the CMU URO for their assistance and guidance throughout this project.

Conclusions

This product design achieves the following design goals:

- Functionality: the device will provide mechanical support to the nasal valve by increasing the nasal valve area and thus increase airflow via inspiration.
- Aesthetic: the device is unsee and unnoticeable by an outside viewer once inserted.
- Safety: the device fits securely inside the nasal passageway and will not be inhaled or fall out.
- Comfort: the device does not cause any irritation or discomfort when inserted.
- Ease Of Use: the device is easily inserted and removed from the nose.
- Low Cost: the device is available as an inexpensive, easily accessible option.

References