Modified Inhaler Adapters
Tiffany Fu (MatSci), Jeong Min Seo (Design), Nicole Tom (ChemE), Benjamin Yang (ChemE)
Department Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA

Introduction

Motivation:
● 30,000 people have asthma attacks and 5,000 individuals are hospitalized every day.
● The combination of a small surface area and lack of force distribution on the traditional top-down push design makes it difficult for children, elderly, and individuals with neuromuscular diseases to self-administer a dose of asthma medication.

Cost of Product

<table>
<thead>
<tr>
<th>Adapter</th>
<th>Manufacturing Cost (per unit)</th>
<th>Selling Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area Adapter</td>
<td>$7</td>
<td>$17</td>
</tr>
<tr>
<td>Squeeze Adapter</td>
<td>$10</td>
<td></td>
</tr>
</tbody>
</table>

Potential Market and Impact

Product Users
● People who require assistance using an asthma inhaler
● People who suffer from neuromuscular disease, elderly over age 65, children under age 12

Market Size
● 105 million people in U.S. have neuromuscular disease are over age 65 and/or are under age 12
● ~8% of population has asthma

Results in a potential market of 8.5 million in U.S.

Distribution
● Distribution through pharmacies and medical practices

Competitors
● Aerogen Solo
 (+) more effective drug delivery
 (-) bulkier, more costly
● Dry Powder Inhalers (alternative product)
 (+) better update of medication by patient
 (-) more costly
 (+/-) dispenses different types of medication

Inhaler Adapters

Area Adapter
Designed to increase surface area for users to apply medication with ease

- Users push down on the three tabs similar to current inhalers
- By increasing the surface area, less force is required
- Size of inhaler is increased by 20% with the adapter

Squeeze Adapter
Allows users to squeeze instead of push down to operate

- The squeeze mechanism redirects the force exerted from lateral into a vertical direction
- Each adapter uses the entire hand rather than a single (or multiple) finger(s)
- Size of inhaler is increased by 65% with the adapter

Testing and Results

Standard Inhaler
- Average Force Exerted for the Thumb and Finger for a Traditional Inhaler

Area Adapter
- Requires 7.6 pounds of force
- Average Force Exerted per Finger for the Area Adapter

- Requires 8.2 pounds of combined finger force showing 10% design inefficiency
- Decrease in at least 48% force per finger

Squeeze Adapter
- Requires 9.4 pounds of combined finger force showing 25% design inefficiency
- Decrease in at least 45% force per finger

Anticipated Regulatory Pathway

- Inhalers are classified as ear, nose and throat drug administration devices, which are housed under the Office of Device Evaluation
- According to the FDA, inhaler adapters are Class I devices
 ○ Low-risk device
 ○ 510(K) is not required; need proof of safety and effectiveness
 ○ Premarket notification application and FDA clearance not required
- According to FDA, inhaler adapter has manufacturing and marketing requirements:
 ○ Proper listing and labeling
 ○ GMP not required

Acknowledgements

This work was supported by the Undergraduate Research Office at Carnegie Mellon University. The authors would like to thank Dr. Conrad Zapanta, Dr. Phil Zapanta, and Bruce Che for their support and guidance on this project.

References