Clinical Need

Hypoxemia
- Respiratory diseases like chronic obstructive pulmonary disorder and pneumonia lead to hypoxemia
- Low blood-oxygen saturation
- 1/3 of hospital visits and 20-30% adults affected

Oxygen Supply
- Oxygen- one of the essential medicines by World Health Organization (WHO)
- Highly effective in treating hypoxemia
- Not widely available in low resource settings

Design Accomplishments

Oxygen Tanks
- Designed to transport oxygen
- Used for emergency situations

Oxygen Pipeline System
- Designed to supply oxygen to patients
- Requires steady voltage supply

Oxygen Concentrators
- Designed to concentrate oxygen
- Difficult to transport

Solution Profile

Existing solutions and their shortcomings Include:
- Oxygen Tanks: Difficult to transport
- Oxygen Pipeline System: Very expensive
- Oxygen Concentrators: Expensive

Needs Statement
- An affordable, safe, and effective oxygen concentrator capable of handling power supply issues

Pressure Swing Adsorption
- Designed a dual bed setup that would allow for continuous oxygen concentration via selective adsorption of nitrogen
- Physically implemented design (pressure vessels with zeolite, fittings, tubing, solenoid valves) and incorporated an Arduino controller and associated electronics to switch air flow between the two beds
- Performed calculations to determine mass balance, bed size, nitrogen adsorption, optimal pressure and flow rate
- Tested design using prototype
- Troubleshooted design and systematically tried to identify root cause for low oxygen concentration

Assumptions for local equilibrium model for pressure swing absorption
- No flow maldistribution or dead volume
- No concentration gradients within zeolite particles or film surrounding particles
- Isothermal plug flow with constant velocity
- sterility plug flow with constant velocity

Voltage Stabilizer
- Designed a voltage stabilizing circuit that can interpret magnitude and direction of voltage fluctuations
- Simulated the circuit in LTSpice to prove that it can adequately handle voltage disturbances
- Research fabrication methods and created list of components needed to actually make the device

Voltage input and outputs for Fig 2:
- V(in) through V(out) are inputs, ranging from 160V to 280V
- V(in) through V(out) are corresponding outputs, with the range limited to between 220V to 240V

Fig 1: Diagram of the voltage stabilizer

Fig 2: Voltage inputs and outputs for the voltage stabilizer simulated in LTSpice

Fig 3: Experimental setup used to test its oxygen concentrating efficacy

Fig 4: Local equilibrium model for pressure swing absorption

Fig 5: Rendering of the exterior design

Fig 6: Rendering of the interior layout of the device

Market Analysis and Cost

An Affordable, Safe and Effective Oxygen Concentrator for Use in Low-Resource Settings

An at-home oxygen concentrator is sold for $735 on average. In addition to being expensive, the existing models are unable to handle fluctuating voltage input and performing maintenance on the devices is difficult.

EverAir is expected to be manufactured and assembled locally in Nepal within a university lab environment. Off-the-shelf components will be procured from India and China. The cost of a unit produced is expected to be $328. It is designed for the local environment and requires minimum maintenance.

Cost Per Oxygen Concentrator

- Market Average: $735
- EverAir: $328

Future Work

To address the lack of an affordable oxygen concentrator capable of dealing with the voltage fluctuations typical in Nepal, the team has designed and tested an oxygen concentrating subsystem and a voltage stabilizer, as well as developed an overall design for an easy-to-use oxygen concentrator:

- Key innovation is the voltage stabilizer
- Detects voltage differences above and below standard input voltage range and uses voltage transformers to maintain it within the acceptable range
- Also takes into account the functionality of the oxygen concentrating subsystem, voltage stabilizer, and exterior design

Voltage Stabilizer
- Designed a voltage stabilizing circuit that can interpret magnitude and direction of voltage fluctuations
- Simulated the circuit in LTSpice to prove that it can adequately handle voltage disturbances
- Researched fabrication methods and created list of components needed to actually make the device

Voltage input and outputs for Fig 2:
- V(in) through V(out) are inputs, ranging from 160V to 280V
- V(in) through V(out) are corresponding outputs, with the range limited to between 220V to 240V

Fig 1: Diagram of the voltage stabilizer

Fig 2: Voltage inputs and outputs for the voltage stabilizer simulated in LTSpice

Fig 3: Experimental setup used to test its oxygen concentrating efficacy

Fig 4: Local equilibrium model for pressure swing absorption

Fig 5: Rendering of the exterior design

Fig 6: Rendering of the interior layout of the device

References