Antibacterial Scrubs for Healthcare Workers

Akindele Davies (MSE), Claire Gianakas (ChemE), Maya Holay (ChemE), Benal Johnson (Design), Kimberly Klausing (MSE)

42-402 Biomedical Engineering Senior Design Project
Carnegie Mellon University, Pittsburgh, PA

Abstract

Scrubs for healthcare workers have provided protection from bodily fluids and various different bacteria in a high-risk environment for contamination such as a hospital. Unfortunately, the rise of gram-negative, highly contagious, and antibiotic-resistant bacterial infections has limited the ability of the current scrub design to properly prevent infections to both healthcare workers and their patients. The number of healthcare associated infections is increasing every year, with almost 100,000 people dying from them in the U.S. alone, costing the healthcare system roughly $35 billion per year.1 The development of bacteria-resistant scrubs is essential to reduce healthcare costs and prevent the spread of bacteria within hospitals due to healthcare associated infections. We tested the antibacterial properties of various fabrics and coatings using standard bacteria testing to try and create a scrub that reduces bacterial colony count on the scrub by 10^4 colony forming units/mL or more.

Background

Healthcare associated infections (HAIs)

➔ Infections acquired by a patient in a healthcare setting during treatment for another condition
➔ Particularly high risk for patients with compromised immune systems (e.g. patients in an intensive care unit)
➔ Caused by exchange of bodily fluids, air borne pathogens, or physical contact

Transmission

➔ Ocular as doctors, nurses, and other healthcare workers (HCWs) travel from patient to patient while carrying bacteria on their scrubs
➔ When entering a patient’s room, healthcare professionals will pick up antibiotic-resistant bacteria from patients about 18% of the time

Methods

2cm x 2cm swatches of each type of fabric were placed in a flask containing Lysogeny broth (LB) of a known concentration of E. coli. The swatches were to be filed in a 37°C incubator with 5% CO₂ for 4 hours. The swatches were quickly dipped in PBS and then placed in centrifuge tubes with 30 mL of PBS. The tubes were vortexed for 3 minutes and the resulting PBS solutions were serially diluted and plated onto agar plates. The plates were allowed to grow for 24 hours at 37°C (with 5% CO₂) before the individual colonies were counted and the colony forming units (CFUs) per mL were calculated.

For the swatches containing treated fabrics, the bacterial reduction percentage was calculated using the following equation:

\[R = \frac{B}{A} \times 100 \]

where R is the percent reduction of bacteria, A represents the number of bacteria colonies in the control, and B represents the number of bacteria colonies in each of the treated fabrics (both measured in CFUs/mL).

Results

A two-pronged approach was used for the antibacterial scrub, combining the material properties of a textile with the varied properties of a chemical coating.

- Bamboo rayon was chosen for optimal comfort and sustainability. The fabric is moisture-wicking, takes coatings well, and is available in abundance6
- Silver nanoparticle fabric was chosen due to its intrinsically antibacterial properties6
- The alginate coating was chosen since it is non-toxic, sustainably sourced, and has antibacterial properties7

Figure 1: Graph of bacterial percent change (CFUs/mL) of each swatch of fabric compared to the standard scrub swatch. N=3

The E. coli bacteria was grown overnight in a 37°C incubator to ensure that a sufficient concentration of bacteria was present for measurements. The swatches were each placed in the bacterial solution and allowed to sit in a 37°C and 5% CO₂ incubator. The concentration of bacteria on each swatch was measured after the swatches had 4 hours of stationary contact with the bacteria. The experiment was conducted 3 times.

The percent change in bacteria concentration was calculated (see Methods). The bamboo fabric increased the bacterial concentration by 52% compared to the standard scrub. On the other hand, the silver nanoparticle fabric with hydrophobic coating reduced the bacterial concentration by 66%, and both the standard scrub and the bamboo scrub with the alginate coating saw reductions of over 95%.

Future Work

While the initial results of our work are promising, there still exist several issues that must be addressed before this technology can enter mass markets. These future directions include:

- Fine tuning of alginate coating
- Current coating makes the fabric brittle and is therefore deemed unwearable. The cross-linking agent requires change.
- Washing durability tests
- The durability of the coatings and their respective properties has yet to be investigated and may impact recommendations moving forward.
- Scaling up the coating and treatment processes
- Industrial scale production of scrubs varies greatly from lab scale, therefore more research needs to be conducted in regards to scale up.
- Investigating the antibacterial properties of the fabrics with other bacteria such as Staphylococcus aureus (MRSA).

Although E. coli is a good start, other common and dangerous bacteria strains such as MRSA exist in the hospital setting and should not be exceptions to the scrub’s antibacterial properties.

Acknowledgements

We would like to thank Dr. Anthony Harris, Dr. Conrad Zapanta, Angela Lai and the Biomedical Engineering Department for assistance during the completion of this project. We would also like to acknowledge the Undergraduate Research Office at Carnegie Mellon for their financial support of our project.

References