Ambulatory Extracorporeal Blood Oxygenation Assist Device

Joe Kromka, Bryan Good, Heath McAlister, Erica List, Jason Ma, Brad Edelman
Dr. Conrad Zapanta, James Antaki, Dr. Raymond Benza
Carnegie Mellon University, Department of Biomedical Engineering
Allegheny General Hospital

Executive Summary
Chronic obstructive pulmonary disease (COPD) causes approximately 125,000 deaths annually in the United States. For many patients, the only real solution to their loss of lung function is a complete lung transplant. Current extracorporeal membrane oxygenation (ECMO) methods confine patients to bed due to bulky machines and cumbersome cannula connections. In order to keep patients in the best possible condition for a transplant, an artificial lung device allowing patient ambulation would be ideal. The goal of our project is to design a dual lumen catheter to replace the current two-catheter setup as well as create a portable blood oxygenation system. This catheter will take in deoxygenated blood from the right atrium and deliver oxygenated blood to the left atrium. By still utilizing the partial function of damaged lungs, this catheter could permit the use of a smaller external gas exchanger that could be more mobile than typical ECMO devices. Because a smaller gas exchanger can be used, it can be contained in a backpack to allow the patient to be mobile while awaiting transplant. This offers a vast improvement over current lung assist devices that force a patient to remain bedridden while also increasing the risk for infection by maintaining two openings in the skin.

Description of the Problem and Clinical Need
- **Problem**: Patients undergoing ECMO are confined to a bed because machines are too large to move and they require two cannula insertion points.
- **Intended Patients**: Patients currently receiving ECMO who have maintained at least partial lung function
- **Advantages**:
 - Reduces infection by using one cannula entry point
 - Allows patient mobility with small oxygenator and single insertion point
 - Uses partial lung function to reduce oxygen requirements

Description of the Market
- The primary group of customers that the product would appeal to is health care providers treating patients with COPD and payers would be patients who are in need for a lung transplant or those who are undergoing acute lung failure.
- ~125,000 patients have COPD. Only 1500 lung transplants are performed, showing a need for alternative solutions which our product can provide.
- Our dual-lumen catheter design proposes a lower risk of infection and increased patient mobility over leading two-catheter systems. Similar dual lumen designs on the market, although none of them are functioning as oxygenation catheters.
- Manufacturing through extrusion costly due to lack of available companies.
- Increasing mobility through catheter design promotes product. However, patients face greater risk due to risky atrial wall puncture procedure.
- Difference in costs of current catheters and our design is negligible. Greater mobility allows for less in-patient care and reduces healthcare costs.

Cannula Design:
- A single dual lumen tube inserted through the jugular vein
- One lumen terminates in the right atrium and removes deoxygenated blood
- Second lumen passes through a transseptal puncture to deliver oxygenated blood directly to right atrium

Description of Design

Oxygenator Design:
- Reverse engineer a Baxter Oxygenator
- Exceed total surface area of oxygen fibers
- Exceed total residence time of blood in contact with fibers
- Flat design to incorporate into a backpack carrier
- Prototype limited by manufacturing processes
- Sharp corners and boxy shape
- Prototype demonstrates functionality and concept

Overall Oxygenation Circuit:

What is Novel?
- Current ECMO methods use two catheters
 - one inserted into the femoral vein to remove deoxygenated blood and another inserted into the jugular vein to replace oxygenated blood
- Cumbersome connection
- Transseptal puncture allows partially functioning lungs to keep oxygenating blood in a limited capacity
- Reduces oxygenator requirements

Estimation of Product Costs

<table>
<thead>
<tr>
<th>Component</th>
<th>Unit Cost</th>
<th>Manufacturer Material Cost</th>
<th>Estimated Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygenator</td>
<td>$200</td>
<td>$150</td>
<td>$150</td>
</tr>
<tr>
<td>Left Atrial</td>
<td>$200</td>
<td>$150</td>
<td>$150</td>
</tr>
<tr>
<td>Right Atrial</td>
<td>$200</td>
<td>$150</td>
<td>$150</td>
</tr>
<tr>
<td>Pumps</td>
<td>$100</td>
<td>$75</td>
<td>$75</td>
</tr>
<tr>
<td>Filters</td>
<td>$100</td>
<td>$75</td>
<td>$75</td>
</tr>
<tr>
<td>Catheters</td>
<td>$200</td>
<td>$150</td>
<td>$150</td>
</tr>
<tr>
<td>Backpacks</td>
<td>$200</td>
<td>$150</td>
<td>$150</td>
</tr>
<tr>
<td>Excluding extrusion machine fixed cost</td>
<td>$2,050</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Custom part estimate
**McMaster-Carr estimate
^Adjusted from retail price to wholesale price
*Excluding extrusion machine fixed cost

Anticipated Regulatory Pathway
- Our device is similar to existing products: ECMO machine and cardiovascular cannulas
- Class III device because the patient’s life depends on its function
- Because of this high risk, PMA is anticipated regulatory pathway
 - Requires thorough testing to prove safety and effectiveness of device (biocompatibility tests, risk analysis, ex-vivo tests, in vivo animal tests, clinical tests)